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Abstract—Hadoop is a famous distributed computing 

framework that is applied to process large-scale data. 

“Straggling tasks” have a serious impact on Hadoop 

performance due to imbalance of slow tasks distribution. 

Speculative execution (SE) presents a way to deal with Straggling 

tasks by monitoring the real-time progress of running tasks and 

replicating potential “Stragglers” on another node to increase the 

opportunity of completing backup tasks ahead of original. 

Current proposed SE strategies meet their challenges such as 

misjudgment of “Straggling tasks”, improper selection of backup 

nodes, etc., which result in inefficient performance of the SE and 

its Hadoop system. In this paper, we propose an optimized SE 

strategy based on local data prediction, which collects task 

execution information in real time and uses Locally Weighted 

Regression (LWR) to predict remaining time of each running 

tasks, and selects an appropriate backup task node according to 

the actual requirements. It also combines a cost-benefit model to 

maximize the effectiveness of SE. According to the results, the 

proposed SE strategy implemented in Hadoop-2.6.0 enhances the 

accuracy of selecting potential Straggler task candidates, and 

shows better performance in various situations in a 

heterogeneous Hadoop environment.  

Keywords—Hadoop; Speculative Execution; Straggling Task; 

LWR; Prediction Accuracy 

I. INTRODUCTION  

In recent years, cloud computing has served as a new 
distributed computing model, which has attracted wide 
concerns and interests from the academia and industry [1].  The 
hadoop, which acts as the top project of Apache and one of the 
most popular cloud computing frameworks, has been widely 
adopted for its distributed features on data storage, computing 
and searching [2].  

The process of job scheduling in a Hadoop system aims to 
divide a job into multiple tasks, and then provoke a JobTracker 
service to assign the tasks to corresponding TaskTracker nodes. 
Distributing tasks as fast as possible cannot guarantee that 
subsequent execution in each TaskTracker still maintains its 
superiority [3], and may lead to the so-called slow tasks, 
“Straggler”. Speculative Execution (SE) is the current effective 
mechanism to recognize and correct inefficient allocation made 
by a JobTracker service so as to improve the fault tolerance 
feature of the Hadoop [4]. The main goal of an SE strategy is 

to find out potential stragglers and back them up to 
TaskTracker nodes that can complete the backup tasks faster 
than the original ones, thereby reduce the execution time of the 
job and increase the performance of the entire cluster [5]. 

Those existing optimized SE strategies such as LATE[6], 
ERUL[7], MCP[8], etc. were designed to recognize slow tasks 
based on the self-estimation of the tasks' remaining time, so 
suffer from possible inappropriate allocation due to inaccurate 
estimation. Therefore, we propose a new speculative execution 
strategy called Locally Weighted Regression based Speculative 
Execution (LWR-SE), which aims to predict the remaining 
time of a run-time task more accurately with maximum 
benefits as far as the entire cluster is concerned. 

The rest of this paper is arranged as follows. Section II lists 
related research work on current optimization strategies for 
Hadoop speculative execution mechanism. Our design of 
“LWR-SE” is presented in Section III. Section IV compares 
and evaluates our strategy with current algorithms through 
experiments, finally, the whole work in this paper and critical 
future work are concluded in Section V. 

II. RELATED WORK 

In order to improve the performance of Hadoop-Naive in 
heterogeneous environments, Zaharia, et al. presented an SE 
strategy called LATE, which uses the remaining time as the 
speculative execution priority [6]. Wu et al. proposed a SE 
strategy called ERUL, presenting the linear relationship 
between system load and the remaining time of a task, which 
calculates the remaining time by the real-time system load and 
improves the accuracy of the prediction [7].  

Since the previous strategies did not take into account 
cluster efficiency, MCP was proposed to calculate and 
maximize the benefits of launching backup tasks [8]. An 
optimized SE strategy called Ex-MCP was presented by taking 
the value of nodes into consideration compared with the MCP 
[9]. In addition, some other optimization strategies are 
proposed. Wang et al. presented an improved strategy called 
Partial Speculative Execution (PSE) to enhance the efficiency 
of SE, with no consideration of the difference between 
processors [10]. In [11], an efficient SE strategy (SECDT) was 
designed and implemented by calculating the completion time 



 

of the task based on a C4.5 decision tree algorithm. Besides, a 
dynamic slot allocation was put forward to improve the 
performance of job execution and Speculative Execution 
Performance Balancing (SEPB) was designed to achieve the 
balance between a single jobs and multiple jobs [12]. 

In summary, existing SE strategies still meet difficulties in 
the accuracy when recognizing potential “Straggler” tasks and 
the efficiency during backing it up in an appropriate fast node. 
Furthermore, maintaining the trade-off between local 
effectiveness and overall benefit becomes also challenging. 

III. MODEL AND ALGORITHM 

In order to better evaluate and predict running tasks and to 
bring maximum benefit to the cluster while launching the 
backup tasks, we propose a new method called “LWR-SE”. In 
this strategy, consequent decision on whether to start backing 
up is made depending on the recognition of a Straggler, the 
benefits/costs to replicate it and the selection of a suitable 
backup node. 

A. The Recognition of Straggler Candidates 

 Collect the detailed information of run-time tasks.  

The first step to determine a Stragglers is to collect the 
detailed information of running tasks, which includes their 
progress and execution time. Original collected data on task 
progress, formatted as (progress, Timestamp), are retrieved 
from the HDFS in order to extract data features for prediction. 
The progress pair is then converted to (progress, execution-
time), where the timestamp is directly converted to the 
execution time in order to facilitate following calculation.  

 Design a locally weighted regression model to adapt 
task progress to achieve local prediction accuracy. 

After collecting the execution information of multiple 
running tasks in the Wordcount dataset, a non-traditional linear 
relationship between progress and execution time can be found. 

With regard to the converted datasets formatted as 
(progress, execution-time), the input dataset D={(pi, 

ti)|i=1,2,…,n} , the predicted output of a 
given input vector is shown in Equation (1).         
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Where n is the number of the training samples. p is the 

input vector with n+1 variables which includes p0，p1…. pn, 

where p0=1, and p1 to pn are for the corresponding progress of 
the task p. t is the output variable that indicates the consuming 
time of task execution. 

θ is  needed to ensure that the loss function J(θ) of the 
LWR at the prediction point (pq, tq) is minimum, the loss 
function is designed as follows: 
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Where X is an input matrix, Y is the output vector. W is 

a diagonal weight function matrix. 

A Gaussian kernel function is therefore used   to 

calculate the weight function ω(d) as in Equation (5), where 

γ is the wave-length parameter and is set to 0.08 in this 

paper. 
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 Predict the remaining time of the run-time tasks at 
particular local query points.   

The Fig. 1 below shows the variation of the weight function 
at the prediction point q. The red dotted line shows the 
selection of the local area when predicting the point q, and the 
red curve indicates the change of the weight function at the 
time of prediction. As can be seen, the weight gradually 
decreases with the increase of distance.  

Fig. 1. The weight function at the prediction point q. 

 

B. The Benefit Calculation of Replicating Stragglers 

According to the designed LWR model, the remaining time 
of the running task trem can be obtained and then sorted in a 
descending order. The task which has the longest task 
remaining time is judged as a “Straggler”candidate and then a 
cost-benefit model is designed to guarantee the benefit of the 
entire cluster. The benefits and consumption of launching a 
backup task are considered and calculated, as shown in 
TABLE I. 

TABLE I.  CONSUMPTION AND BENEFITS OF SE 

 SE Enabled SE Disabled 

Cluster 

Consumption 
Two slots for backupt  One slot for 

remt  

Cluster Benefits One slot for rem backupt t   

Then, a backup task of a recognized “Straggler” will be 
launched only while satisfying the following conditions in 
order to ensure the maximum efficiency of the cluster. 
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In our design, trem is the remaining time predicted by the 
LWR model, tbackup can be further computed as in Equation (7), 
tavg is the average execution time of completed tasks. μ is 
introduced to avoid the influence of the data  skew of the input 
data. 
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C. The Selection of Backup Nodes 

To enhance the performance of SE, we proposes a new 
method to measure and assess potential backup nodes by 
dividing the nodes into two good-at groups, i.e. “Map-Fast” 
nodes and “Reduce-Fast” nodes. In terms of backup node 
candidates with high computing abilities, it takes real-time 
process rate of the backup nodes as a critical metric, and 
determines the backup node eventually by following conditions. 

 _map avg map mapPR PR std    (9) 

 _reduce avg reduce reducePR PR std    (10) 

Where PR represents the processing rate of node candidates, 
and stdmap and stdReduce are the standard deviation of 
progressing rate in these two stages. If the Condition (9) is 
satisfied, it is determined as a “Map-Fast” node, while if the 
Condition (10) is satisfied, it is a “Reduce-Fast” node. In order 
to ensure a backup task is completed ahead of the original 
Straggler, it will be placed in a corresponding fast node to 
execute depending on what stage it resides in. 

IV. RESULTS AND EVALUATION 

In this section, the performance of our proposed Locally 
Weighted Regression based SE strategy (LWR-SE) is 
evaluated in a heterogeneous environment by comparing it 
with Hadoop-None, Hadoop-LATE, Hadoop-MCP in terms of 
job execution time and cluster throughput. 

A. Experimental Environment Preparation  

The experimental cluster uses 64-bit Ubuntu Server 12.04 
as the operating system and Hadoop-2.6.0 as a test platform. 
The heterogeneous Hadoop cluster is built on a server with 
eight virtual nodes. The server contains four Intel® Xeon® 
CPU E5649 2.53 GHz (24 core processors in total), 10 TB of 
hard drive and 288GB of memory. The detailed specification 
of each node is listed in TABLE II. Wordcount dataset is used 
as the experimental workloads, which is downloaded from the 
Purdue MapReduce Benchmarks Suite and widely used to test 
the performance of the optimized Hadoop frame.  

TABLE II.  THE DETAILED INFORMATION OF EACH NODE 

NodeID Memory(GB) Core Processors 

Node 1 10 8 

Node 2 8 4 

Node 3 8 1 

Node 4 8 8 

Node 5 4 8 

Node 6 4 4 

Node 7 18 4 

Node 8 12 8 

B. Performance evaluation of LWR-SE strategy in 

Heterogeneous environment 

 Normal Load Scenario 

In the normal load scenario, a low-load cluster has been 
configured with efficient resources. The execution time of each 
job and the cluster throughput running Wordcount dataset is 
calculated, with experimental results shown in Fig. 2 and Fig. 3.  

As can be seen from Fig. 2 and Fig. 3, when a Wordcount 
job is processed, the job execution time taken by the LWR-SE 
is less than the MCP by 5.3%, less than the LATE by 21.4%, 
less than the Hadoop-None by 27.9% on average. Moreover, 
the LWR-SE improves cluster throughput by 6.9% over the 
MCP, 22.9% over the LATE, and 43.3% over the Hadoop-
None on average. 

In summary, the LWR-SE strategy achieves improvements 
over the MCP, LATE and Hadoop-None in a normal cluster 
load scenario with no data skew. Since the MCP predicts the 
remaining time of running tasks timely combined with a partial 
selection strategy for the selection of backup nodes, the LWR-
SE depicts slight optimization over the MCP but great 
improvements over the LATE and Hadoop-None. 

Fig. 2. Job Execution Time of different SE strategies on Wordcount jobs in a 

normal load scenario 

 

Fig. 3. Cluster Throughtput of different SE strategies on Wordcount jobs in a 

normal load scenario 

 



 

 Busy Load with Data Skew Scenario 

In a practical cloud environment, data skew situation is 
common, especially in the Map stage, which will result in 
“Stragglers” misjudgments due to the different size of input 
data. In order to create a data skew scenario, the Wordcount 
jobs have been proposed with 30GB of its dataset in total and 
100MB of input data in each. The input data were divided into 
two data blocks due to the Hadoop self-split strategy, which are 
64MB and 36MB.  

Fig. 4. Job Execution Time  of different SE strategies on Wordcount jobs in 

a busy load with data skew scenario 

 

Fig. 5. Cluster Throughtput of different SE strategies on Wordcount jobs in a 

busy load with data skew scenario 

 
According to Fig. 4 and Fig. 5, the performance of the 

LWR-SE has been significantly improved, which consumes the 
job execution time 10.5% less than the MCP, 31.9% less than 
the LATE and 36.9% less than the Hadoop-None. Moreover, 
the LWR-SE improves the cluster throughput by 8.1% over the 
MCP, 48.1% over the LATE and 62.8% over the Hadoop-None. 
The LWR-SE makes large improvement over the LATE and 
Hadoop-None since they have not taken data skew into account. 
Even compared with the MCP, which considers the problem of 
data skew, the LWR-SE has depicted about 10% of 
improvement on both metrics due to its higher prediction 
accuracy prediction of remaining time than the MCP. 

V. CONCLUSIONS 

In this paper, we have proposed a novel speculative 
execution strategy, LWR-SE inspired by the non-linear 

relationship between job execution time and progress. 
Different from previous strategies, the LWR-SE collects real-
time information of tasks during task execution, predicts the 
remaining time of running tasks based on a locally weighted 
learning method for locally higher prediction accuracy, and 
ensures the effectiveness of speculative execution and the 
maximum benefits of the entire cloud system. The 
experimental results have shown that the LWR-SE outperforms 
the MCP, LATE and Hadoop-None in three different 
heterogeneous scenarios designed with either normal or busy 
workloads. 
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