

 An Optimized Speculative Execution Strategy Based

on Local Data Prediction in a Heterogeneous Hadoop

Environment

Xiaodong Liu
School of Computing,

Edinburgh Napier University

10 Colinton Road,

Edinburgh, EH10 5DT, UK

 Qi Liu
School of Computing,

Edinburgh Napier University

10 Colinton Road,

Edinburgh, EH10 5DT, UK

Emai1: q.liu@napier.ac.uk

Abstract—Hadoop is a famous distributed computing

framework that is applied to process large-scale data.

“Straggling tasks” have a serious impact on Hadoop

performance due to imbalance of slow tasks distribution.

Speculative execution (SE) presents a way to deal with Straggling

tasks by monitoring the real-time progress of running tasks and

replicating potential “Stragglers” on another node to increase the

opportunity of completing backup tasks ahead of original.

Current proposed SE strategies meet their challenges such as

misjudgment of “Straggling tasks”, improper selection of backup

nodes, etc., which result in inefficient performance of the SE and

its Hadoop system. In this paper, we propose an optimized SE

strategy based on local data prediction, which collects task

execution information in real time and uses Locally Weighted

Regression (LWR) to predict remaining time of each running

tasks, and selects an appropriate backup task node according to

the actual requirements. It also combines a cost-benefit model to

maximize the effectiveness of SE. According to the results, the

proposed SE strategy implemented in Hadoop-2.6.0 enhances the

accuracy of selecting potential Straggler task candidates, and

shows better performance in various situations in a

heterogeneous Hadoop environment.

Keywords—Hadoop; Speculative Execution; Straggling Task;

LWR; Prediction Accuracy

I. INTRODUCTION

In recent years, cloud computing has served as a new
distributed computing model, which has attracted wide
concerns and interests from the academia and industry [1]. The
hadoop, which acts as the top project of Apache and one of the
most popular cloud computing frameworks, has been widely
adopted for its distributed features on data storage, computing
and searching [2].

The process of job scheduling in a Hadoop system aims to
divide a job into multiple tasks, and then provoke a JobTracker
service to assign the tasks to corresponding TaskTracker nodes.
Distributing tasks as fast as possible cannot guarantee that
subsequent execution in each TaskTracker still maintains its
superiority [3], and may lead to the so-called slow tasks,
“Straggler”. Speculative Execution (SE) is the current effective
mechanism to recognize and correct inefficient allocation made
by a JobTracker service so as to improve the fault tolerance
feature of the Hadoop [4]. The main goal of an SE strategy is

to find out potential stragglers and back them up to
TaskTracker nodes that can complete the backup tasks faster
than the original ones, thereby reduce the execution time of the
job and increase the performance of the entire cluster [5].

Those existing optimized SE strategies such as LATE[6],
ERUL[7], MCP[8], etc. were designed to recognize slow tasks
based on the self-estimation of the tasks' remaining time, so
suffer from possible inappropriate allocation due to inaccurate
estimation. Therefore, we propose a new speculative execution
strategy called Locally Weighted Regression based Speculative
Execution (LWR-SE), which aims to predict the remaining
time of a run-time task more accurately with maximum
benefits as far as the entire cluster is concerned.

The rest of this paper is arranged as follows. Section II lists
related research work on current optimization strategies for
Hadoop speculative execution mechanism. Our design of
“LWR-SE” is presented in Section III. Section IV compares
and evaluates our strategy with current algorithms through
experiments, finally, the whole work in this paper and critical
future work are concluded in Section V.

II. RELATED WORK

In order to improve the performance of Hadoop-Naive in
heterogeneous environments, Zaharia, et al. presented an SE
strategy called LATE, which uses the remaining time as the
speculative execution priority [6]. Wu et al. proposed a SE
strategy called ERUL, presenting the linear relationship
between system load and the remaining time of a task, which
calculates the remaining time by the real-time system load and
improves the accuracy of the prediction [7].

Since the previous strategies did not take into account
cluster efficiency, MCP was proposed to calculate and
maximize the benefits of launching backup tasks [8]. An
optimized SE strategy called Ex-MCP was presented by taking
the value of nodes into consideration compared with the MCP
[9]. In addition, some other optimization strategies are
proposed. Wang et al. presented an improved strategy called
Partial Speculative Execution (PSE) to enhance the efficiency
of SE, with no consideration of the difference between
processors [10]. In [11], an efficient SE strategy (SECDT) was
designed and implemented by calculating the completion time

of the task based on a C4.5 decision tree algorithm. Besides, a
dynamic slot allocation was put forward to improve the
performance of job execution and Speculative Execution
Performance Balancing (SEPB) was designed to achieve the
balance between a single jobs and multiple jobs [12].

In summary, existing SE strategies still meet difficulties in
the accuracy when recognizing potential “Straggler” tasks and
the efficiency during backing it up in an appropriate fast node.
Furthermore, maintaining the trade-off between local
effectiveness and overall benefit becomes also challenging.

III. MODEL AND ALGORITHM

In order to better evaluate and predict running tasks and to
bring maximum benefit to the cluster while launching the
backup tasks, we propose a new method called “LWR-SE”. In
this strategy, consequent decision on whether to start backing
up is made depending on the recognition of a Straggler, the
benefits/costs to replicate it and the selection of a suitable
backup node.

A. The Recognition of Straggler Candidates

 Collect the detailed information of run-time tasks.

The first step to determine a Stragglers is to collect the
detailed information of running tasks, which includes their
progress and execution time. Original collected data on task
progress, formatted as (progress, Timestamp), are retrieved
from the HDFS in order to extract data features for prediction.
The progress pair is then converted to (progress, execution-
time), where the timestamp is directly converted to the
execution time in order to facilitate following calculation.

 Design a locally weighted regression model to adapt
task progress to achieve local prediction accuracy.

After collecting the execution information of multiple
running tasks in the Wordcount dataset, a non-traditional linear
relationship between progress and execution time can be found.

With regard to the converted datasets formatted as
(progress, execution-time), the input dataset D={(pi,

ti)|i=1,2,…,n} , the predicted output of a
given input vector is shown in Equation (1).

  
0

n
T

i i

i

t h p p p  


   (1)

Where n is the number of the training samples. p is the

input vector with n+1 variables which includes p0，p1…. pn,

where p0=1, and p1 to pn are for the corresponding progress of
the task p. t is the output variable that indicates the consuming
time of task execution.

θ is needed to ensure that the loss function J(θ) of the
LWR at the prediction point (pq, tq) is minimum, the loss
function is designed as follows:

  
     

2

1

2 2

n
i i

Ti

i

h p t
X Y W X Y

J


 
 

 
   

 


 (2)

 

0T T
J

X WX X WY






  


 (3)

  
1

T TX WX X WY


 (4)

Where X is an input matrix, Y is the output vector. W is

a diagonal weight function matrix.

A Gaussian kernel function is therefore used to

calculate the weight function ω(d) as in Equation (5), where

γ is the wave-length parameter and is set to 0.08 in this

paper.

  

    
2

2

1

2 2
exp exp

2 2

n
q i

i

p p
d

d
 



 
  

     
  
 
 


 (5)

 Predict the remaining time of the run-time tasks at
particular local query points.

The Fig. 1 below shows the variation of the weight function
at the prediction point q. The red dotted line shows the
selection of the local area when predicting the point q, and the
red curve indicates the change of the weight function at the
time of prediction. As can be seen, the weight gradually
decreases with the increase of distance.

Fig. 1. The weight function at the prediction point q.

B. The Benefit Calculation of Replicating Stragglers

According to the designed LWR model, the remaining time
of the running task trem can be obtained and then sorted in a
descending order. The task which has the longest task
remaining time is judged as a “Straggler”candidate and then a
cost-benefit model is designed to guarantee the benefit of the
entire cluster. The benefits and consumption of launching a
backup task are considered and calculated, as shown in
TABLE I.

TABLE I. CONSUMPTION AND BENEFITS OF SE

 SE Enabled SE Disabled

Cluster

Consumption
Two slots for backupt One slot for

remt

Cluster Benefits One slot for rem backupt t

Then, a backup task of a recognized “Straggler” will be
launched only while satisfying the following conditions in
order to ensure the maximum efficiency of the cluster.

 Pr PrSE Enabled SE Disabledofit ofit  (6)

In our design, trem is the remaining time predicted by the
LWR model, tbackup can be further computed as in Equation (7),
tavg is the average execution time of completed tasks. μ is
introduced to avoid the influence of the data skew of the input
data.

backup avgt t   (7)

 input

avg

data

data
  (8)

C. The Selection of Backup Nodes

To enhance the performance of SE, we proposes a new
method to measure and assess potential backup nodes by
dividing the nodes into two good-at groups, i.e. “Map-Fast”
nodes and “Reduce-Fast” nodes. In terms of backup node
candidates with high computing abilities, it takes real-time
process rate of the backup nodes as a critical metric, and
determines the backup node eventually by following conditions.

 _map avg map mapPR PR std  (9)

 _reduce avg reduce reducePR PR std  (10)

Where PR represents the processing rate of node candidates,
and stdmap and stdReduce are the standard deviation of
progressing rate in these two stages. If the Condition (9) is
satisfied, it is determined as a “Map-Fast” node, while if the
Condition (10) is satisfied, it is a “Reduce-Fast” node. In order
to ensure a backup task is completed ahead of the original
Straggler, it will be placed in a corresponding fast node to
execute depending on what stage it resides in.

IV. RESULTS AND EVALUATION

In this section, the performance of our proposed Locally
Weighted Regression based SE strategy (LWR-SE) is
evaluated in a heterogeneous environment by comparing it
with Hadoop-None, Hadoop-LATE, Hadoop-MCP in terms of
job execution time and cluster throughput.

A. Experimental Environment Preparation

The experimental cluster uses 64-bit Ubuntu Server 12.04
as the operating system and Hadoop-2.6.0 as a test platform.
The heterogeneous Hadoop cluster is built on a server with
eight virtual nodes. The server contains four Intel® Xeon®
CPU E5649 2.53 GHz (24 core processors in total), 10 TB of
hard drive and 288GB of memory. The detailed specification
of each node is listed in TABLE II. Wordcount dataset is used
as the experimental workloads, which is downloaded from the
Purdue MapReduce Benchmarks Suite and widely used to test
the performance of the optimized Hadoop frame.

TABLE II. THE DETAILED INFORMATION OF EACH NODE

NodeID Memory(GB) Core Processors

Node 1 10 8

Node 2 8 4

Node 3 8 1

Node 4 8 8

Node 5 4 8

Node 6 4 4

Node 7 18 4

Node 8 12 8

B. Performance evaluation of LWR-SE strategy in

Heterogeneous environment

 Normal Load Scenario

In the normal load scenario, a low-load cluster has been
configured with efficient resources. The execution time of each
job and the cluster throughput running Wordcount dataset is
calculated, with experimental results shown in Fig. 2 and Fig. 3.

As can be seen from Fig. 2 and Fig. 3, when a Wordcount
job is processed, the job execution time taken by the LWR-SE
is less than the MCP by 5.3%, less than the LATE by 21.4%,
less than the Hadoop-None by 27.9% on average. Moreover,
the LWR-SE improves cluster throughput by 6.9% over the
MCP, 22.9% over the LATE, and 43.3% over the Hadoop-
None on average.

In summary, the LWR-SE strategy achieves improvements
over the MCP, LATE and Hadoop-None in a normal cluster
load scenario with no data skew. Since the MCP predicts the
remaining time of running tasks timely combined with a partial
selection strategy for the selection of backup nodes, the LWR-
SE depicts slight optimization over the MCP but great
improvements over the LATE and Hadoop-None.

Fig. 2. Job Execution Time of different SE strategies on Wordcount jobs in a

normal load scenario

Fig. 3. Cluster Throughtput of different SE strategies on Wordcount jobs in a

normal load scenario

 Busy Load with Data Skew Scenario

In a practical cloud environment, data skew situation is
common, especially in the Map stage, which will result in
“Stragglers” misjudgments due to the different size of input
data. In order to create a data skew scenario, the Wordcount
jobs have been proposed with 30GB of its dataset in total and
100MB of input data in each. The input data were divided into
two data blocks due to the Hadoop self-split strategy, which are
64MB and 36MB.

Fig. 4. Job Execution Time of different SE strategies on Wordcount jobs in

a busy load with data skew scenario

Fig. 5. Cluster Throughtput of different SE strategies on Wordcount jobs in a

busy load with data skew scenario

According to Fig. 4 and Fig. 5, the performance of the

LWR-SE has been significantly improved, which consumes the
job execution time 10.5% less than the MCP, 31.9% less than
the LATE and 36.9% less than the Hadoop-None. Moreover,
the LWR-SE improves the cluster throughput by 8.1% over the
MCP, 48.1% over the LATE and 62.8% over the Hadoop-None.
The LWR-SE makes large improvement over the LATE and
Hadoop-None since they have not taken data skew into account.
Even compared with the MCP, which considers the problem of
data skew, the LWR-SE has depicted about 10% of
improvement on both metrics due to its higher prediction
accuracy prediction of remaining time than the MCP.

V. CONCLUSIONS

In this paper, we have proposed a novel speculative
execution strategy, LWR-SE inspired by the non-linear

relationship between job execution time and progress.
Different from previous strategies, the LWR-SE collects real-
time information of tasks during task execution, predicts the
remaining time of running tasks based on a locally weighted
learning method for locally higher prediction accuracy, and
ensures the effectiveness of speculative execution and the
maximum benefits of the entire cloud system. The
experimental results have shown that the LWR-SE outperforms
the MCP, LATE and Hadoop-None in three different
heterogeneous scenarios designed with either normal or busy
workloads.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No 701697.

REFERENCES

[1] L. F. Vaquero, L. Rodero-Merino, J. Caceres, M. Lindner, “A break in

the clouds: towards a cloud definition,” Acm Sigcomm Computer
Communication Review, vol. 39, no. 1, pp. 50-55, 2008.

[2] Z. Li, H. Shen, W. Ligon, J. Denton, “An Exploration of Designing a
Hybrid Scale-Up/Out Hadoop Architecture Based on Performance
Measurements,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 2, pp. 386-400, 2017.

[3] D. G. Yoo, K.M Sim, “A Comparative Review of Job Scheduling For
MapReduce,” International Conference on Cloud Computing and
Intelligence Systems, 2011, pp. 353–358.

[4] S. N. Nenavath, N. Atul, “A Review of Adaptive Approaches to
MapReduce Scheduling in Heterogeneous Environments,” International
Conference on Advances in Computing, Communications and
Informatics, 2014, pp. 677–683.

[5] H. Xu, W. Lau, “Speculative Execution for a single job in a
MapReduce-Like system,” International conference on Cluster
computing, 2014, pp. 586-593.

[6] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, I. Stoica, “Improving
MapReduce performance in heterogeneous environments,” The 8th
USENIX Conference on Operating Systems Design and Implementation
(OSDI), 2008, pp. 29–42.

[7] X. Huang, L. Zhang, R. Li, L. Wan, K. Li, “Novel Heuristic Speculative
Execution Strategies in Heterogeneous Distributed Environments,”.
Computers and Electrical Engineering, 2015.

[8] Q. Chen, C. Liu, Z. Xiao, “Improving MapReduce Performance Using
Smart Speculative Execution Strategy,” IEEE Transactions on
Computers, vol. 63, no. 4, pp. 954-967, 2014.

[9] H. Wu, K. Li, Z. Tang, L. Zhang, “A Heuristic speculative execution
strategy in heterogeneous distributed environments,” The sixth
International symposium on Parallel Architectures, Algorithms and
Programming (PAAP), 2014, pp. 268–273.

[10] Y. Wang, W. Lu, R. Lou, B. Wei, “Improving MapReduce Performance
with Partial Speculative Execution,” Journal of Grid Computing, vol. 13,
pp. 587–604, 2015.

[11] Y. Li, Q. Yang, S. Lai, B. Li, “A New Speculative Execution Algorithm
based on C4.5 Decision Tree for Hadoop,” International Conference of
Young Computer Scientists, Engineers and Educators (ICYCSEE 2015),
2015, pp. 284–291.

[12] S. Tang, B. Lee, B, He, “DynamicMR: A Dynamic Slot Allocation
Optimization Framework for MapReduce Clusters,” IEEE Transactions
on Cloud Computing, vol. 2, no. 3, pp. 333-347, 2014.

